746 research outputs found

    Multiple merger genealogies in outbreaks of Mycobacterium tuberculosis

    Get PDF
    The Kingman coalescent and its developments are often considered among the most important advances in population genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some hosts show much higher transmission rates compared to the average ("super-spreaders"). Here we used an Approximate Bayesian Computation approach to test whether multiple merger coalescents (MMC), a class of models that allow for large variation in reproductive success among lineages, are more appropriate models to study MTB populations. We considered eleven publicly available whole genome sequence data sets sampled from local MTB populations and outbreaks, and found that MMC had a better fit compared to the Kingman coalescent for ten of the eleven data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed, and that past findings based on the Kingman coalescent need to be revisited

    The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this Review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient, and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations, and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC

    Developing customized stepwise MIRU-VNTR typing for tuberculosis surveillance in Georgia

    Get PDF
    INTRODUCTION: Mycobacterial Interspersed Repetitive Units-Variable Tandem Repeats (MIRU-VNTR) typing has been widely used for molecular epidemiological studies of tuberculosis (TB). However, genotyping tools for Mycobacterium tuberculosis (Mtb) may be limiting in some settings due to high cost and workload. In this study developed a customized stepwise MIRU-VNTR typing that prioritizes high discriminatory loci and validated this method using penitentiary system cohort in the country of Georgia. METHODS: We used a previously generated MIRU-VNTR dataset from recurrent TB cases (32 cases) in Georgia and a new dataset of TB cases from the penitentiary system (102 cases) recruited from 2014 to 2015. A Hunter-Gaston Discriminatory Index (HGDI) was calculated utilizing a 24 standard loci panel, to select high discriminatory power loci, subsequently defined as the customized Georgia-specific set of loci for initial typing. The remaining loci were scored and hierarchically grouped for second and third step typing of the cohort. We then compared the processing time and costs of the customized stepwise method to the standard 24-loci method. RESULTS: For the customized Georgia-specific set that was used for initial typing, 10 loci were selected with a minimum value of 0.32 to the highest HGDI score locus. Customized 10 loci (step 1) typing of 102 Mtb patient isolates revealed 35.7% clustered cases. This proportion was reduced to 19.5% after hierarchical application of 2nd and 3rd step typing with the corresponding groups of loci. Our customized stepwise MIRU-VNTR genotyping approach reduced the quantity of samples to be typed and therefore overall processing time and costs by 42.6% each. CONCLUSION: Our study shows that our customized stepwise MIRU-VNTR typing approach is a valid alternative of standard MIRI-VNTR typing panels for molecular epidemiological investigation in Georgia that saves time, workload and costs. Similar approaches could be developed for other settings

    First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Nepal

    Get PDF
    BACKGROUND: Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. METHODS AND FINDINGS: We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42-4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43-5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. CONCLUSIONS: We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian reg

    PolyTB: a genomic variation map for Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest

    Case-control diagnostic accuracy study of a non-sputum CD38-based TAM-TB test from a single milliliter of blood

    Get PDF
    Background: CD4 T cell phenotyping-based blood assays have the potential to meet WHO target product profiles (TPP) of non-sputum-biomarker-based tests to diagnose tuberculosis (TB). Yet, substantial refinements are required to allow their implementation in clinical settings. This study assessed the real time performance of a simplified T cell activation marker (TAM)-TB assay to detect TB in adults from one millilitre of blood with a 24h turnaround time. Methods: We recruited 479 GeneXpert® positive cases and 108 symptomatic but GeneXpert® negativecontrols from presumptive adult TB patients in the Temeke District of Dar-es-Salaam, Tanzania. TAM-TB assay accuracy was assessed by comparison with a composite reference standard comprising GeneXpert® and solid culture. A single millilitre of fresh blood was processed to measure expression of CD38 or CD27 by CD4 T cells producing INF-γ and/or TNF-α in response to a synthetic peptide pool covering the sequences of Mycobacterium tuberculosis (Mtb) ESAT-6, CFP-10 and TB10.4 antigens on a 4-color FACSCalibur apparatus. Results: Significantly superior to CD27 in accurately diagnosing TB, the CD38-based TAM-TB assay specificity reached 93.4% for a sensitivity of 82.2% with an area under the receiver operating characteristics curve of 0.87 (95% CI 0.84-0.91). The assay performance was not significantly affected by HIV status. Conclusions: Wesuccessfully implemented TAM-TB immunoassay routine testing with a 24h turnaround time at district level in a resource limited setting. Starting from one millilitre of fresh blood and being not influenced by HIV status, TAM-TB assay format and performance appears closely compatible with the optimal TPP accuracy criteria defined by WHO for a non-sputum confirmatory TB test

    CD38 expression by antigen-specific CD4 t cells is significantly restored 5 months after treatment initiation independently of sputum bacterial load at the time of tuberculosis diagnosis

    Get PDF
    T cell activation markers (TAM) expressed by antigen-specific T cells constitute promising candidates to attest the presence of an active infection by Mycobacterium tuberculosis (Mtb). Reciprocally, their modulation may be used to assess antibiotic treatment efficacy and eventually attest disease resolution. We hypothesized that the phenotype of Mtb-specific T cells may be quantitatively impacted by the load of bacteria present in a patient. We recruited 105 Tanzanian adult tuberculosis (TB) patients and obtained blood before and after 5 months of antibiotic treatment. We studied relationships between patients' clinical characteristics of disease severity and microbiological as well as molecular proxies of bacterial load in sputum at the time of diagnosis. Besides, we measured by flow cytometry the expression of CD38 or CD27 on CD4+ T cells producing interferon gamma (IFN-γ) and/or tumor necrosis factor alpha (TNF-α) in response to a synthetic peptide pool covering the sequences of Mtb antigens ESAT-6, CFP-10, and TB10.4. Reflecting the difficulty to extrapolate bacterial burden from a single end-point read-out, we observed statistically significant but weak correlations between Xpert MTB/RIF, molecular bacterial load assay and time to culture positivity. Unlike CD27, the resolution of CD38 expression by antigen-specific T cells was observed readily following 5 months of antibiotic therapy. However, the intensity of CD38-TAM signals measured at diagnosis did not significantly correlate with Mtb 16S RNA or rpoB DNA detected in patients' sputa. Altogether, our data support CD38-TAM as an accurate marker of infection resolution independently of sputum bacterial load
    corecore